Thursday 24 August 2017

Mad Para A Previsão Média Móvel Ponderada De Três Períodos


Moving Average Forecasting Introdução. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis ​​esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados ​​e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. quot Ambas as estimativas são, na verdade, média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsõesquot porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpastquot, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis ​​Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis ​​Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha de modo que o resultado da computação apareça onde ele deve gostar da seguinte maneira. A Previsão Cálculo Métodos Doze métodos de cálculo de previsões estão disponíveis. A maioria desses métodos fornece controle limitado do usuário. Por exemplo, o peso colocado nos dados históricos recentes ou o intervalo de datas dos dados históricos utilizados nos cálculos pode ser especificado. Os exemplos seguintes mostram o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos a seguir utilizam os mesmos dados de vendas de 2004 e 2005 para produzir uma previsão de vendas de 2006. Além do cálculo de previsão, cada exemplo inclui uma previsão simulada de 2005 para um período de retenção de três meses (opção de processamento 19 3), que é usado para os cálculos de precisão e desvio absoluto médio (vendas reais em comparação com a previsão simulada). A.2 Critérios de Avaliação de Desempenho de Previsão Dependendo da sua seleção de opções de processamento e das tendências e padrões existentes nos dados de vendas, alguns métodos de previsão terão um desempenho melhor do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. É também improvável que um método de previsão que forneça bons resultados numa fase do ciclo de vida de um produto permaneça apropriado ao longo de todo o ciclo de vida. Você pode escolher entre dois métodos para avaliar o desempenho atual dos métodos de previsão. Estes são Desvio Médio Absoluto (MAD) e Porcentagem de Precisão (POA). Ambos os métodos de avaliação de desempenho requerem dados de vendas históricos para um período de tempo especificado pelo usuário. Este período de tempo é chamado de período de retenção ou período de melhor ajuste (PBF). Os dados neste período são usados ​​como base para recomendar qual dos métodos de previsão deve ser usado na realização da projeção de projeção seguinte. Esta recomendação é específica para cada produto e pode mudar de uma geração de projeção para outra. Os dois métodos de avaliação de desempenho de previsão são demonstrados nas páginas que seguem os exemplos dos doze métodos de previsão. A.3 Método 1 - Percentual especificado no último ano Este método multiplica os dados de vendas do ano anterior por um fator especificado pelo usuário, por exemplo, 1,10 para um aumento de 10 ou 0,97 para uma diminuição de 3. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo especificado pelo usuário para avaliar o desempenho da previsão (opção de processamento 19). A.4.1 Cálculo de Previsão Faixa do histórico de vendas a ser usado no cálculo do fator de crescimento (opção de processamento 2a) 3 neste exemplo. Soma dos três últimos meses de 2005: 114 119 137 370 Soma dos mesmos três meses do ano anterior: 123 139 133 395 O factor calculado 370/395 0,9367 Calcule as previsões: Janeiro de 2005 vendas 128 0,9367 119,8036 ou cerca de 120 de Fevereiro de 2005 Vendas 117 0,9367 109,5939 ou cerca de 110 de Março de 2005 vendas 115 0,9367 107,7205 ou cerca de 108 A.4.2 Cálculo de Previsão Simulado Soma dos três meses de 2005 antes do período de retenção (Julho, Agosto, Setembro): 129 140 131 400 Soma dos mesmos três meses Para o ano anterior: 141 128 118 387 O fator calculado 400/387 1.033591731 Calcula a previsão simulada: Outubro, 2004 vendas 123 1.033591731 127.13178 Vendas de novembro de 2004 139 1.033591731 143.66925 Vendas de dezembro de 2004 133 1.033591731 137.4677 A.4.3 Percentual de Precisão Cálculo POA 124,13178 143,66925 137,4677) / (114 119 137) 100 408,26873 / 370 100 110,3429 A.4.4 Cálculo do Desvio Absoluto Médio MAD (127,13178 - 114 143,66925 - 119 137,4677 - 137) / 3 (13,13178 24,66925 0,4677) / 3 12,75624 A.5 Método 3 - Ano passado para este ano Este método copia os dados de vendas do ano anterior para o próximo ano. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo especificados para avaliar o desempenho da previsão (opção de processamento 19). A.6.1 Cálculo de Previsão Número de períodos a incluir na média (opção de processamento 4a) 3 neste exemplo Para cada mês da previsão, faça a média dos dados dos três meses anteriores. Previsão de Janeiro: 114 119 137 370, 370/3 123.333 ou 123 Previsão de Fevereiro: 119 137 123 379, 379/3 126.333 ou 126 Previsão de Março: 137 123 126 379, 386/3 128.667 ou 129 A.6.2 Cálculo de Previsão Simulado Outubro de 2005 Vendas (129 140 131) / 3 133.3333 Vendas de novembro de 2005 (140 131 114) / 3 128.3333 Vendas de dezembro de 2005 (131 114 119) / 3 121.3333 A.6.3 Percentual de Precisão Cálculo POA (133.3333 128.3333 121.3333) / (114 119 137) 100 103.513 A.6.4 Cálculo do Desvio Absoluto Médio MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) / 3 14.7777 A.7 Método 5 - Aproximação Linear A aproximação linear calcula uma tendência baseada em dois pontos de dados do histórico de vendas. Esses dois pontos definem uma linha de tendência reta projetada para o futuro. Use esse método com cautela, pois as previsões de longo alcance são alavancadas por pequenas alterações em apenas dois pontos de dados. Histórico de vendas necessário: O número de períodos a incluir em regressão (opção de processamento 5a), mais 1 mais o número de períodos de tempo para avaliar o desempenho da previsão (opção de processamento 19). A.8.1 Cálculo de Previsão Número de períodos a incluir em regressão (opção de processamento 6a) 3 neste exemplo Para cada mês da previsão, adicione o aumento ou diminuição durante os períodos especificados antes do período de retenção do período anterior. Média dos três meses anteriores (114 119 137) / 3 123.3333 Resumo dos três meses anteriores com peso considerado (114 1) (119 2) (137 3) 763 Diferença entre os valores 763 - 123.3333 (1 2 3) 23 Relação (12 22 32) - 2 3 14 - 12 2 Valor1 Diferença / Relação 23/2 11,5 Valor2 Relação média-valor1 123,3333 - 11,5 2 100,333 Previsão (1 n) valor1 valor2 4 11,5 100,333 146,333 ou 146 Previsão 5 11,5 100,3333 157,8333 ou 158 Previsão 6 11.5 100.3333 169.3333 ou 169 A.8.2 Cálculo de Previsão Simulado Vendas de Outubro de 2004: Média dos três meses anteriores (129 140 131) / 3 133.3333 Resumo dos três meses anteriores com ponderação considerada (129 1) (140 2) (131 3) 802 Diferença entre os valores 802 - 133.3333 (1 2 3) 2 Relação (12 22 32) - 2 3 14 - 12 2 Valor1 Diferença / Relação 2/2 1 Valor2 Relação média - valor1 133.3333 - 1 2 131.3333 Previsão (1 N) valor1 valor2 4 1 131.3333 135.3333 Vendas de Novembro de 2004 Média dos últimos três meses (140 131 114) / 3 128.3333 Resumo dos três meses anteriores com ponderação considerada (140 1) (131 2) (114 3) 744 Diferença entre Valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 Diferença / Rácio -25.9999 / 2 -12.9999 Valor2 Relação média-valor1 128.3333 - (-12.9999) 2 154.3333 Previsão 4 -12.9999 154.3333 102.3333 Média de Dezembro de 2004 dos três meses anteriores ( 131 114 119) / 3 121.3333 Resumo dos três meses anteriores com ponderação considerada (131 1) (114 2) (119 3) 716 Diferença entre os valores 716 - 121.3333 (1 2 3) -11.9999 Valor1 Diferença / Rácio -11.9999 / 2 -5,9999 Valor2 Relação média - valor1 121,3333 - (-5,9999) 2 133,333 Previsão 4 (-5,9999) 133,3333 109,3333 A.8,3 Percentagem de Precisão Cálculo POA (135,33 102,33 109,33) / (114 119 137) 100 93,78 A.8,4 Média Absoluta Métodos 7 - Aproximação do Segundo Grau A Regressão Linear determina os valores para aeb na fórmula de previsão Y a bX com o objetivo de ajustar uma linha reta para Os dados do histórico de vendas. Aproximação de segundo grau é semelhante. No entanto, este método determina valores para a, b e c na fórmula de previsão Y a bX cX2 com o objetivo de ajustar uma curva aos dados do histórico de vendas. Este método pode ser útil quando um produto está na transição entre fases de um ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estádios de crescimento, a tendência de vendas pode acelerar. Devido ao termo de segunda ordem, a previsão pode aproximar-se rapidamente do infinito ou cair para zero (dependendo se o coeficiente c é positivo ou negativo). Portanto, este método é útil apenas no curto prazo. Especificações de previsão: As fórmulas encontram a, b e c para encaixar uma curva em exatamente três pontos. Você especifica n na opção de processamento 7a, o número de períodos de tempo de dados a serem acumulados em cada um dos três pontos. Neste exemplo n 3. Portanto, os dados de vendas reais de abril a junho são combinados no primeiro ponto, Q1. Julho a setembro são adicionados em conjunto para criar Q2, e de outubro a dezembro somam para Q3. A curva será ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas necessário: 3 n períodos para calcular a previsão mais o número de períodos necessários para avaliar o desempenho da previsão (PBF). Número de períodos a incluir (opção de processamento 7a) 3 neste exemplo Utilize os meses anteriores (3 n) em blocos de três meses: Q1 (Abr - Jun) 125 122 137 384 Q2 (Jul - Set) 129 140 131 400 Q3 O passo seguinte envolve o cálculo dos três coeficientes a, b e c a serem usados ​​na fórmula de previsão Y a bX cX2 (1) Q1 a bX cX2 (onde X 1) abc (2) Q2 A b c c X 2 (onde X 2) a 2b 4c (3) Q3 a bX cX2 (onde X 3) a 3b 9c Resolva as três equações simultaneamente para encontrar b, ae c: Subtraia a equação (1) da equação (2) E resolva para b (2) - (1) Q2 - Q1 b 3c Substitua esta equação para b na equação (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Finalmente, substitua estas equações por aeb por (Q1 - Q2) (Q1 - Q2) / 2 O método de Aproximação de Segundo Grau calcula a, b e c da seguinte forma: a Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) / 2 (370-400) (322 340 - 368) / 3 294/3 98 por período de Abril a Junho de 2003 (X2) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X Previsão (X5): (322 510 - 828) / 3 1,33 ou 1 por período de outubro a dezembro (X7) (322 595 - 1127) / 3 -70 A.9.2 Cálculo de Previsão Simulado Vendas de Outubro, Novembro e Dezembro de 2004: Q1 (Jan - Mar) 360 Q2 (Abril - Junho) 384 Q3 (Jul - Set) 400 a 400 - 3 (384 - 360) 328 (400 - 384) (360 - 384) / 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 16/3 136 A.9.3 Percentagem do Cálculo da Precisão POA (136 136 136) / (114 119 137) 100 110,27 A.9.4 Cálculo do Desvio Absoluto Médio MAD (136 - 114 136 - 119 136 - 137) / 3 13.33 A.10 Método 8 - Método Flexível O Método Flexível (Percentagem sobre n Meses Anterior) É semelhante ao método 1, porcentagem sobre o ano passado. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado pelo usuário e projetam o resultado para o futuro. No método Percent Over Last Year, a projeção é baseada em dados do mesmo período do ano anterior. O método flexível adiciona a capacidade de especificar um período de tempo diferente do mesmo período do ano passado para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 1.15 na opção de processamento 8b para aumentar os dados do histórico de vendas anteriores em 15. Período de base. Por exemplo, n 3 fará com que a primeira previsão se baseie em dados de vendas em outubro de 2005. Histórico mínimo de vendas: O usuário especificou o número de períodos de volta ao período base, mais o número de períodos necessários para avaliar o desempenho da previsão PBF). A.10.4 Cálculo do Desvio Absoluto Médio MAD (148 - 114 161 - 119 151 - 137) / 3 30 A.11 Método 9 - Média Móvel Ponderada O método Média Móvel Ponderada (WMA) é semelhante ao Método 4, Média Móvel (MA) . No entanto, com a Média Móvel Ponderada, você pode atribuir pesos desiguais aos dados históricos. O método calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Os dados mais recentes geralmente são atribuídos a um peso maior do que os dados mais antigos, o que torna a WMA mais responsiva às mudanças no nível de vendas. No entanto, o viés de previsão e erros sistemáticos ainda ocorrem quando o histórico de vendas do produto exibe tendência forte ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos do histórico de vendas a utilizar no cálculo da previsão. Por exemplo, especifique n 3 na opção de processamento 9a para usar os três períodos mais recentes como base para a projeção para o próximo período de tempo. Um valor grande para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas será lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responderá mais rapidamente a mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O peso atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar 1,00. Por exemplo, quando n 3, atribua pesos de 0,6, 0,3 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) / 3 13,5 A.12 Método 10 - Suavização linear Este método é semelhante ao Método 9, Média Móvel Ponderada (WMA). No entanto, em vez de arbitrariamente atribuir pesos aos dados históricos, uma fórmula é usada para atribuir pesos que declinam linearmente e somam a 1,00. O método calcula então uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como acontece com todas as técnicas de previsão média móvel linear, previsão de viés e erros sistemáticos ocorrem quando o histórico de vendas do produto exibe tendência forte ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos do histórico de vendas a utilizar no cálculo da previsão. Isto é especificado na opção de processamento 10a. Por exemplo, especifique n 3 na opção de processamento 10b para usar os três períodos mais recentes como base para a projeção para o próximo período de tempo. O sistema atribuirá automaticamente os pesos aos dados históricos que diminuem linearmente e somam a 1,00. Por exemplo, quando n3, o sistema atribuirá pesos de 0,5, 0,3333 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.12.1 Cálculo de Previsão Número de períodos a incluir na média de suavização (opção de processamento 10a) 3 neste exemplo Razão para um período anterior 3 / (n2 n) / 2 3 / (32 3) / 2 3/6 0,5 Razão para dois Períodos anteriores 2 / (n2 n) / 2 2 / (32 3) / 2 2/6 0,3333 .. Relação para três períodos anteriores 1 / (n2 n) / 2 1 / (32 3) / 2 1/6 0,1666. Previsão de Janeiro: 137 0,5 119 1/3 114 1/6 127,16 ou 127 Previsão de Fevereiro: 127 0,5 137 1/3 119 1/6 129 Previsão de Março: 129 0,5 127 1/3 137 1/6 129,666 ou 130 A.12.2 Cálculo Previsto Simulado Outubro 2004 vendas 129 1/6 140 2/6 131 3/6 133.6666 Novembro 2004 vendas 140 1/6 131 2/6 114 3/6 124 Dezembro 2004 vendas 131 1/6 114 2/6 119 3/6 119,333 A.12.3 Percentagem do Cálculo da Precisão POA (133.6666 124 119.3333) / (114 119 137) 100 101.891 A.12.4 Cálculo do Desvio Absoluto Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) / 3 14.1111 A.13 Método 11 - Suavização Exponencial Este método é semelhante ao Método 10, Suavização Linear. No Linear Smoothing o sistema atribui pesos aos dados históricos que diminuem linearmente. Na suavização exponencial, o sistema atribui pesos que decrescem exponencialmente. A equação de previsão de suavização exponencial é: Previsão a (Vendas reais anteriores) (1-a) Previsão Anterior A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. A é o peso aplicado às vendas reais do período anterior. (1-a) é o peso aplicado à previsão do período anterior. Valores válidos para um intervalo de 0 a 1, e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00. A (1-a) 1 Você deve atribuir um valor para a constante de suavização, a. Se você não atribui valores para a constante de suavização, o sistema calcula um valor assumido com base no número de períodos do histórico de vendas especificado na opção de processamento 11a. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou magnitude das vendas. Valores válidos para um intervalo de 0 a 1. n o intervalo de dados do histórico de vendas a incluir nos cálculos. Geralmente um ano de dados de histórico de vendas é suficiente para estimar o nível geral de vendas. Para este exemplo, foi escolhido um pequeno valor para n (n 3) para reduzir os cálculos manuais necessários para verificar os resultados. A suavização exponencial pode gerar uma previsão baseada em apenas um ponto de dados históricos. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.13.1 Cálculo de Previsão Número de períodos a incluir na média de suavização (opção de processamento 11a) 3 e factor alfa (opção de processamento 11b) em branco neste exemplo um factor para os dados de vendas mais antigos 2 / (11) ou 1 quando alfa é Especificou um fator para o segundo mais antigo dados de vendas 2 / (12), ou alfa quando alfa é especificado um fator para o terceiro mais antigos dados de vendas 2 / (13), ou alfa quando alfa é especificado um fator para os dados de vendas mais recentes 2 / (1n), ou alfa quando o alfa é especificado November Sm. Média. A (Outubro Real) (1 - a) Outubro Sm. Média. 1 114 0 0 114 Dezembro Sm. Média. A (Novembro Real) (1 - a) Novembro Sm. Média. 2/3 119 1/3 114 117.3333 Janeiro Previsão a (Dezembro Real) (1 - a) Dezembro Sm. Média. 2/4 137 2/4 117.3333 127.16665 ou 127 Fevereiro Previsão Previsão de Janeiro 127 Março Previsão Previsão de Janeiro 127 A.13.2 Cálculo de Previsão Simulado Julho, 2004 Sm. Média. 2/2 129 129 Agosto Sm. Média. 2/3 140 1/3 129 136,333 Setembro Sm. Média. 2/4 131 2/4 136.3333 133.6666 Outubro, 2004 vendas Setembro Sm. Média. 133,6666 Agosto, 2004 Sm. Média. 2/2 140 140 Setembro Sm. Média. 2/3 131 1/3 140 134 Outubro Sm. Média. 2/4 114 2/4 134 124 Novembro, 2004 vendas Setembro Sm. Média. 124 Setembro 2004 Sm. Média. 2/2 131 131 Outubro Sm. Média. 2/3 114 1/3 131 119,6666 Novembro Sm. Média. 2/4 119 2/4 119.6666 119.3333 Dezembro 2004 vendas Setembro Sm. Média. 119.3333 A.13.3 Percentagem do Cálculo da Precisão POA (133.6666 124 119.3333) / (114 119 137) 100 101.891 A.13.4 Cálculo do Desvio Absoluto Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) / 3 14.1111 A.14 Método 12 - Suavização Exponencial com Tendência e Sazonalidade Este método é semelhante ao Método 11, Suavização Exponencial em que é calculada uma média suavizada. No entanto, o Método 12 também inclui um termo na equação de previsão para calcular uma tendência suavizada. A previsão é composta por uma média suavizada ajustada para uma tendência linear. Quando especificada na opção de processamento, a previsão também é ajustada pela sazonalidade. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou magnitude das vendas. Valores válidos para alfa variam de 0 a 1. b a constante de suavização usada no cálculo da média suavizada para a componente de tendência da previsão. Valores válidos para beta variam de 0 a 1. Se um índice sazonal é aplicado à previsão aeb são independentes um do outro. Eles não precisam adicionar 1.0. Histórico de vendas mínimo obrigatório: dois anos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). O método 12 usa duas equações exponenciais de suavização e uma média simples para calcular uma média suavizada, uma tendência suavizada e um fator sazonal médio simples. A.14.1 Cálculo de Previsão A) Uma média exponencialmente suavizada MAD (122.81 - 114 133.14 - 119 135.33 - 137) / 3 8.2 A.15 Avaliação das Previsões Você pode selecionar métodos de previsão para gerar até doze previsões para cada produto. Cada método de previsão provavelmente criará uma projeção ligeiramente diferente. Quando milhares de produtos são previstos, é impraticável tomar uma decisão subjetiva sobre qual das previsões usar em seus planos para cada um dos produtos. O sistema avalia automaticamente o desempenho de cada um dos métodos de previsão selecionados e para cada um dos produtos previstos. Você pode escolher entre dois critérios de desempenho, Desvio Médio Absoluto (MAD) e Porcentagem de Precisão (POA). MAD é uma medida do erro de previsão. POA é uma medida do viés de previsão. Ambas as técnicas de avaliação de desempenho requerem dados de histórico de vendas reais para um período de tempo especificado pelo usuário. Esse período da história recente é chamado de período de retenção ou período de melhor ajuste (PBF). Para medir o desempenho de um método de previsão, use as fórmulas de previsão para simular uma previsão para o período de retenção histórico. Geralmente, haverá diferenças entre os dados de vendas reais ea previsão simulada para o período de retenção. Quando vários métodos de previsão são selecionados, esse mesmo processo ocorre para cada método. Várias previsões são calculadas para o período de retenção e comparadas com o histórico de vendas conhecido para esse mesmo período de tempo. Recomenda-se que o método de previsão que produz o melhor ajuste (melhor ajuste) entre a previsão e as vendas reais durante o período de retenção seja usado em seus planos. Esta recomendação é específica para cada produto e pode mudar de uma geração de projeção para outra. A.16 Desvio absoluto médio (MAD) MAD é a média (ou média) dos valores absolutos (ou magnitude) dos desvios (ou erros) entre os dados reais e os previstos. MAD é uma medida da magnitude média de erros a esperar, dado um método de previsão e histórico de dados. Como os valores absolutos são usados ​​no cálculo, os erros positivos não cancelam os erros negativos. Ao comparar vários métodos de previsão, aquele com o menor MAD mostrou ser o mais confiável para esse produto para esse período de retenção. Quando a previsão é imparcial e os erros são normalmente distribuídos, existe uma relação matemática simples entre MAD e duas outras medidas comuns de distribuição, desvio padrão e erro quadrático médio: A.16.1 Porcentagem de Precisão (POA) Porcentagem de Precisão (POA) é Uma medida do viés de previsão. Quando as previsões são consistentemente muito altas, os estoques se acumulam e os custos de estoque aumentam. Quando as previsões são consistentemente duas baixas, os estoques são consumidos eo serviço ao cliente diminui. Uma previsão que é 10 unidades muito baixo, então 8 unidades muito alto, então 2 unidades muito alto, seria uma previsão imparciais. O erro positivo de 10 é cancelado por erros negativos de 8 e 2. Erro real - previsão Quando um produto pode ser armazenado no inventário e quando a previsão é imparcial, uma pequena quantidade de estoque de segurança pode ser usado para amortecer os erros. Nesta situação, não é tão importante eliminar erros de previsão como é gerar previsões imparciais. No entanto, no sector dos serviços, a situação acima seria encarada como três erros. O serviço seria insuficiente no primeiro período, então overstaffed para os próximos dois períodos. Nos serviços, a magnitude dos erros de previsão é geralmente mais importante do que o viés previsto. A soma durante o período de retenção permite erros positivos para cancelar erros negativos. Quando o total de vendas reais excede o total de vendas previstas, a proporção é superior a 100. Naturalmente, é impossível ser mais de 100 precisos. Quando uma previsão é imparcial, a razão POA será 100. Portanto, é mais desejável ser 95 precisos do que ser precisos 110. O critério POA seleciona o método de previsão que tem uma razão POA mais próxima de 100. O script nesta página aprimora a navegação de conteúdo, mas não altera o conteúdo de nenhuma maneira.3 Compreendendo Níveis e Métodos de Previsão Você pode gerar previsões de detalhe E previsões resumidas (linha de produtos) que refletem os padrões de demanda de produtos. O sistema analisa as vendas anteriores para calcular as previsões usando 12 métodos de previsão. As previsões incluem informações detalhadas no nível do item e informações de nível superior sobre uma filial ou a empresa como um todo. 3.1 Critérios de Avaliação do Desempenho da Previsão Dependendo da seleção das opções de processamento e das tendências e padrões nos dados de vendas, alguns métodos de previsão apresentam melhor desempenho do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Você pode achar que um método de previsão que fornece bons resultados em uma fase de um ciclo de vida do produto permanece apropriado ao longo de todo o ciclo de vida. Você pode selecionar entre dois métodos para avaliar o desempenho atual dos métodos de previsão: Porcentagem de precisão (POA). Desvio absoluto médio (MAD). Ambos os métodos de avaliação de desempenho exigem dados de vendas históricos para um período que você especificar. Esse período é chamado de período de retenção ou período de melhor ajuste. The data in this period is used as the basis for recommending which forecasting method to use in making the next forecast projection. This recommendation is specific to each product and can change from one forecast generation to the next. 3.1.1 Best Fit The system recommends the best fit forecast by applying the selected forecasting methods to past sales order history and comparing the forecast simulation to the actual history. When you generate a best fit forecast, the system compares actual sales order histories to forecasts for a specific time period and computes how accurately each different forecasting method predicted sales. Then the system recommends the most accurate forecast as the best fit. This graphic illustrates best fit forecasts: Figure 3-1 Best fit forecast The system uses this sequence of steps to determine the best fit: Use each specified method to simulate a forecast for the holdout period. Compare actual sales to the simulated forecasts for the holdout period. Calculate the POA or the MAD to determine which forecasting method most closely matches the past actual sales. The system uses either POA or MAD, based on the processing options that you select. Recommend a best fit forecast by the POA that is closest to 100 percent (over or under) or the MAD that is closest to zero. 3.2 Forecasting Methods JD Edwards EnterpriseOne Forecast Management uses 12 methods for quantitative forecasting and indicates which method provides the best fit for the forecasting situation. This section discusses: Method 1: Percent Over Last Year. Method 2: Calculated Percent Over Last Year. Method 3: Last Year to This Year. Method 4: Moving Average. Method 5: Linear Approximation. Method 6: Least Squares Regression. Method 7: Second Degree Approximation. Method 8: Flexible Method. Method 9: Weighted Moving Average. Method 10: Linear Smoothing. Method 11: Exponential Smoothing. Method 12: Exponential Smoothing with Trend and Seasonality. Specify the method that you want to use in the processing options for the Forecast Generation program (R34650). Most of these methods provide limited control. For example, the weight placed on recent historical data or the date range of historical data that is used in the calculations can be specified by you. The examples in the guide indicate the calculation procedure for each of the available forecasting methods, given an identical set of historical data. The method examples in the guide use part or all of these data sets, which is historical data from the past two years. The forecast projection goes into next year. This sales history data is stable with small seasonal increases in July and December. This pattern is characteristic of a mature product that might be approaching obsolescence. 3.2.1 Method 1: Percent Over Last Year This method uses the Percent Over Last Year formula to multiply each forecast period by the specified percentage increase or decrease. To forecast demand, this method requires the number of periods for the best fit plus one year of sales history. This method is useful to forecast demand for seasonal items with growth or decline. 3.2.1.1 Example: Method 1: Percent Over Last Year The Percent Over Last Year formula multiplies sales data from the previous year by a factor you specify and then projects that result over the next year. This method might be useful in budgeting to simulate the affect of a specified growth rate or when sales history has a significant seasonal component. Forecast specifications: Multiplication factor. For example, specify 110 in the processing option to increase the previous years sales history data by 10 percent. Required sales history: One year for calculating the forecast, plus the number of time periods that are required for evaluating the forecast performance (periods of best fit) that you specify. This table is history used in the forecast calculation: February forecast equals 117 times 1.1 128.7 rounded to 129. March forecast equals 115 times 1.1 126.5 rounded to 127. 3.2.2 Method 2: Calculated Percent Over Last Year This method uses the Calculated Percent Over Last Year formula to compare the past sales of specified periods to sales from the same periods of the previous year. The system determines a percentage increase or decrease, and then multiplies each period by the percentage to determine the forecast. To forecast demand, this method requires the number of periods of sales order history plus one year of sales history. This method is useful to forecast short term demand for seasonal items with growth or decline. 3.2.2.1 Example: Method 2: Calculated Percent Over Last Year The Calculated Percent Over Last Year formula multiplies sales data from the previous year by a factor that is calculated by the system, and then it projects that result for the next year. This method might be useful in projecting the affect of extending the recent growth rate for a product into the next year while preserving a seasonal pattern that is present in sales history. Forecast specifications: Range of sales history to use in calculating the rate of growth. For example, specify n equals 4 in the processing option to compare sales history for the most recent four periods to those same four periods of the previous year. Use the calculated ratio to make the projection for the next year. Required sales history: One year for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation, given n 4: February forecast equals 117 times 0.9766 114.26 rounded to 114. March forecast equals 115 times 0.9766 112.31 rounded to 112. 3.2.3 Method 3: Last Year to This Year This method uses last years sales for the next years forecast. To forecast demand, this method requires the number of periods best fit plus one year of sales order history. This method is useful to forecast demand for mature products with level demand or seasonal demand without a trend. 3.2.3.1 Example: Method 3: Last Year to This Year The Last Year to This Year formula copies sales data from the previous year to the next year. This method might be useful in budgeting to simulate sales at the present level. The product is mature and has no trend over the long run, but a significant seasonal demand pattern might exist. Forecast specifications: None. Required sales history: One year for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals January of last year with a forecast value of 128. February forecast equals February of last year with a forecast value of 117. March forecast equals March of last year with a forecast value of 115. 3.2.4 Method 4: Moving Average This method uses the Moving Average formula to average the specified number of periods to project the next period. You should recalculate it often (monthly, or at least quarterly) to reflect changing demand level. To forecast demand, this method requires the number of periods best fit plus the number of periods of sales order history. This method is useful to forecast demand for mature products without a trend. 3.2.4.1 Example: Method 4: Moving Average Moving Average (MA) is a popular method for averaging the results of recent sales history to determine a projection for the short term. The MA forecast method lags behind trends. Forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products that are in the growth or obsolescence stages of the life cycle. Forecast specifications: n equals the number of periods of sales history to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) is quicker to respond to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. Required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: February forecast equals (114 119 137 125) / 4 123.75 rounded to 124. March forecast equals (119 137 125 124) / 4 126.25 rounded to 126. 3.2.5 Method 5: Linear Approximation This method uses the Linear Approximation formula to compute a trend from the number of periods of sales order history and to project this trend to the forecast. You should recalculate the trend monthly to detect changes in trends. This method requires the number of periods of best fit plus the number of specified periods of sales order history. This method is useful to forecast demand for new products, or products with consistent positive or negative trends that are not due to seasonal fluctuations. 3.2.5.1 Example: Method 5: Linear Approximation Linear Approximation calculates a trend that is based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution because long range forecasts are leveraged by small changes in just two data points. Forecast specifications: n equals the data point in sales history that is compared to the most recent data point to identify a trend. For example, specify n 4 to use the difference between December (most recent data) and August (four periods before December) as the basis for calculating the trend. Minimum required sales history: n plus 1 plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast December of past year 1 (Trend) which equals 137 (1 times 2) 139. February forecast December of past year 1 (Trend) which equals 137 (2 times 2) 141. March forecast December of past year 1 (Trend) which equals 137 (3 times 2) 143. 3.2.6 Method 6: Least Squares Regression The Least Squares Regression (LSR) method derives an equation describing a straight line relationship between the historical sales data and the passage of time. LSR fits a line to the selected range of data so that the sum of the squares of the differences between the actual sales data points and the regression line are minimized. The forecast is a projection of this straight line into the future. This method requires sales data history for the period that is represented by the number of periods best fit plus the specified number of historical data periods. The minimum requirement is two historical data points. This method is useful to forecast demand when a linear trend is in the data. 3.2.6.1 Example: Method 6: Least Squares Regression Linear Regression, or Least Squares Regression (LSR), is the most popular method for identifying a linear trend in historical sales data. The method calculates the values for a and b to be used in the formula: This equation describes a straight line, where Y represents sales and X represents time. Linear regression is slow to recognize turning points and step function shifts in demand. Linear regression fits a straight line to the data, even when the data is seasonal or better described by a curve. When sales history data follows a curve or has a strong seasonal pattern, forecast bias and systematic errors occur. Forecast specifications: n equals the periods of sales history that will be used in calculating the values for a and b. For example, specify n 4 to use the history from September through December as the basis for the calculations. When data is available, a larger n (such as n 24) would ordinarily be used. LSR defines a line for as few as two data points. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Minimum required sales history: n periods plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: March forecast equals 119.5 (7 times 2.3) 135.6 rounded to 136. 3.2.7 Method 7: Second Degree Approximation To project the forecast, this method uses the Second Degree Approximation formula to plot a curve that is based on the number of periods of sales history. This method requires the number of periods best fit plus the number of periods of sales order history times three. This method is not useful to forecast demand for a long-term period. 3.2.7.1 Example: Method 7: Second Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a b X with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar, but this method determines values for a, b, and c in the this forecast formula: Y a b X c X 2 The objective of this method is to fit a curve to the sales history data. This method is useful when a product is in the transition between life cycle stages. For example, when a new product moves from introduction to growth stages, the sales trend might accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). This method is useful only in the short term. Forecast specifications: the formula find a, b, and c to fit a curve to exactly three points. You specify n, the number of time periods of data to accumulate into each of the three points. In this example, n 3. Actual sales data for April through June is combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve is fitted to the three values Q1, Q2, and Q3. Required sales history: 3 times n periods for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (May) (Jun) which equals 125 122 137 384 Q2 (Jul) (Aug) (Sep) which equals 140 129 131 400 Q3 (Oct) (Nov) (Dec) which equals 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a b X c X 2 . Q1, Q2, and Q3 are presented on the graphic, where time is plotted on the horizontal axis. Q1 represents total historical sales for April, May, and June and is plotted at X 1 Q2 corresponds to July through September Q3 corresponds to October through December and Q4 represents January through March. This graphic illustrates the plotting of Q1, Q2, Q3, and Q4 for second degree approximation: Figure 3-2 Plotting Q1, Q2, Q3, and Q4 for second degree approximation Three equations describe the three points on the graph: (1) Q1 a bX cX 2 where X 1(Q1 a b c) (2) Q2 a bX cX 2 where X 2(Q2 a 2b 4c) (3) Q3 a bX cX 2 where X 3(Q3 a 3b 9c) Solve the three equations simultaneously to find b, a, and c: Subtract equation 1 (1) from equation 2 (2) and solve for b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substitute this equation for b into equation (3): (3) Q3 a 3(Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3(Q2 ndash Q1) Finally, substitute these equations for a and b into equation (1): (1)Q3 ndash 3(Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) / 2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 ndash 3(Q2 ndash Q1) 370 ndash 3(400 ndash 384) 370 ndash 3(16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 times ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) / 2 (370 ndash 400) (384 ndash 400) / 2 ndash23 This is a calculation of second degree approximation forecast: Y a bX cX 2 322 85X (ndash23) (X 2 ) When X 4, Q4 322 340 ndash 368 294. The forecast equals 294 / 3 98 per period. When X 5, Q5 322 425 ndash 575 172. The forecast equals 172 / 3 58.33 rounded to 57 per period. When X 6, Q6 322 510 ndash 828 4. The forecast equals 4 / 3 1.33 rounded to 1 per period. This is the forecast for next year, Last Year to This Year: 3.2.8 Method 8: Flexible Method This method enables you to select the best fit number of periods of sales order history that starts n months before the forecast start date, and to apply a percentage increase or decrease multiplication factor with which to modify the forecast. This method is similar to Method 1, Percent Over Last Year, except that you can specify the number of periods that you use as the base. Depending on what you select as n, this method requires periods best fit plus the number of periods of sales data that is indicated. This method is useful to forecast demand for a planned trend. 3.2.8.1 Example: Method 8: Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a factor specified by you, and then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. You can also use the Flexible Method to specify a time period, other than the same period in the last year, to use as the basis for the calculations. Multiplication factor. For example, specify 110 in the processing option to increase previous sales history data by 10 percent. Base period. For example, n 4 causes the first forecast to be based on sales data in September of last year. Minimum required sales history: the number of periods back to the base period plus the number of time periods that is required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.9 Method 9: Weighted Moving Average The Weighted Moving Average formula is similar to Method 4, Moving Average formula, because it averages the previous months sales history to project the next months sales history. However, with this formula you can assign weights for each of the prior periods. This method requires the number of weighted periods selected plus the number of periods best fit data. Similar to Moving Average, this method lags behind demand trends, so this method is not recommended for products with strong trends or seasonality. This method is useful to forecast demand for mature products with demand that is relatively level. 3.2.9.1 Example: Method 9: Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, you can assign unequal weights to the historical data when using WMA. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so WMA is more responsive to shifts in the level of sales. However, forecast bias and systematic errors occur when the product sales history exhibits strong trends or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. The number of periods of sales history (n) to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. Such a value results in a stable forecast, but it is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) responds more quickly to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. The weight that is assigned to each of the historical data periods. The assigned weights must total 1.00. For example, when n 4, assign weights of 0.50, 0.25, 0.15, and 0.10 with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals (131 times 0.10) (114 times 0.15) (119 times 0.25) (137 times 0.50) / (0.10 0.15 0.25 0.50) 128.45 rounded to 128. February forecast equals (114 times 0.10) (119 times 0.15) (137 times 0.25) (128 times 0.50) / 1 127.5 rounded to 128. March forecast equals (119 times 0.10) (137 times 0.15) (128 times 0.25) (128 times 0.50) / 1 128.45 rounded to 128. 3.2.10 Method 10: Linear Smoothing This method calculates a weighted average of past sales data. In the calculation, this method uses the number of periods of sales order history (from 1 to 12) that is indicated in the processing option. The system uses a mathematical progression to weigh data in the range from the first (least weight) to the final (most weight). Then the system projects this information to each period in the forecast. This method requires the months best fit plus the sales order history for the number of periods that are specified in the processing option. 3.2.10.1 Example: Method 10: Linear Smoothing This method is similar to Method 9, WMA. However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) / 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) / (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.

No comments:

Post a Comment